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Robust Fault Diagnosis Scheme in a Class of Nonlinear System based on
UIO and Fuzzy Residual
S. Hamideh Sedigh Ziyabari* and Mahdi Aliyari Shoorehdeli

Abstract: In this study, a novel robust fault diagnosis scheme is developed for a class of nonlinear systems when
both fault and disturbance are considered. The proposed scheme includes both component and sensor fault with
nonlinear system that transferred to nonlinear Takagi-Sugeno (T-S) model. It considers a larger category of nonlin-
ear system when fuzzification is used for only nonlinear distribution matrices. In fact the proposed method covers
nonlinear systems could not transform to linear T-S model. This paper studies the problem of robust fault diagnosis
based on two fuzzy nonlinear observers, the first one is a fuzzy nonlinear unknown input observer (FNUIO) and
the other is a fuzzy nonlinear Luenberger observer (FNLO). This approach decouples the faulty subsystem from
the rest of the system through a series of transformations. Then, the objective is to design FNUIO to guarantee
the asymptotic stability of the error dynamic using the Lyapunov method; meanwhile, FNLO is designed for faulty
subsystem to generate fuzzy residual signal based on a quadratic Lyapunov function and some matrices inequality
convexification techniques. FNUIO affects only the fault free subsystem and completely removes any unknown in-
puts such as disturbances when residual signal is generated by FNLO is affected by component or sensor fault. This
novelty and using nonlinear system in T-S model make the proposed method extremely effective from last decade
literature. Sufficient conditions are established in order to guarantee the convergence of the state estimation error.
Thus, a residual generator is determined on the basis of LMI conditions such that the estimation error is completely
sensitive to fault vector and insensitive to the unknown inputs. Finally, an numerical example is given to show the
highly effectiveness of the proposed fault diagnosis scheme.

Keywords: At least four key words or phrases in alphabetical order, separated by commas.

1. INTRODUCTION

Impermissible deviation a system from standard condi-
tion is referred to as a fault. Faulty signals can exist in
actuators, sensors and process components of engineering
systems that lead to significant performance degradation
and even instability of the system. Since fault diagnosis
and process monitoring have become an essential part of
the modern control systems. The great number of success-
ful fault detection application in industrial processes and
automatic control systems help to confirm its necessity,
especially in last two decades [1–4].

In the fault diagnosis methods, model-based method
could well prove its ability to diagnosis. This can be di-
vided to an analytical model represented by set of dif-
ferential equations or it can be knowledge-based model
represented [4, 5]. Knowledge-based model approaches
such as neural networks [6] and experts systems [7] are
more suitable for information-poor systems; on the other
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hand, in analytical model-based approaches, residual sig-
nal is generated by using the mathematical model of the
system. The most commonly used approaches include
Observer-based approach [8, 9], Parity space approach
[10] and Parameter estimation-based approach [11]. In
general, parity space approach and parameter-based ap-
proach are not suitable for nonlinear systems and will not
be considered in this paper. Observer-based technique has
received much attention to design a fault detection filter
or residual signal that includes a threshold to detect the
fault. Recent papers in this field have been addressed for a
class of nonlinear systems but with parametric uncertainty
and a certain class of faults [12, 13], time delayed faults
[14], sampled-data systems [15], networked control sys-
tems [16, 17] and nonlinear switched stochastic systems
[18].

On the other research front, fuzzy logic has attracted a
great deal of attention to represent a large class of non-
linear systems in the past few decades [19]. It has been
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well recognized, because of simple using to control many
complex nonlinear systems and many related studies have
been done by other researchers [20, 21]. To mention a
few, in [22] was studied the problem of observer-based
robust fault detection for a class of discrete-time nonlin-
ear systems. The system was represented by T-S fuzzy
affine dynamic models with norm-bounded uncertainties.
The proposed scheme is based on a piecewise quadratic
Lyapunov function combined with S-procedure and some
matrix inequality convexification techniques. The main
innovation of the paper is all the conditions are formu-
lated in the form of linear matrix inequalities despite us-
ing linearization of the system around different operating
point and minimization its fault not rejection. [23] was
presented a common approach for systems described by
T-S multiple linear models. The principle of the proposed
strategy was to transform the fault diagnosis problem in a
simple of L2 norm minimization by introducing a trans-
fer function. The time delay between fault occurrence
and fault accommodation was calculated in [24]; also, the
damaging effect on system performance and stability has
been investigated. In fact, after detection and isolation of
fault, an estimation scheme for single fault was designed
that was not very real. [25] was considered development
of sliding mode unknown input observer for uncertain T-
S model by linearization of the system trajectory around
the operating sector of the system. In [26] the problem of
fuzzy unknown input observer based fault estimation for
discrete-time T-S fuzzy systems was considered and pro-
posed a less conservative FUIO design method by using
a finite frequency range technique instead of an entire-
frequency method. [27] was concerned a fault detection
(FD) problem in finite frequency domain for continuous-
time T-S fuzzy systems with sensor faults. Some finite
frequency performance indices are initially introduced to
measure the fault/reference input sensitivity and distur-
bance robustness. Furthermore in [28] the membership
functions was considered unknown, the linear FD filter
designed with fixed gains and to reduce the conservatism
of the existing results, a switching mechanism was pro-
vided to construct an FD filter with varying gains. Sector
nonlinearity method is common way to generate a linear
fuzzy set from nonlinear system, and the interest of this
method is that the final model exactly represents the orig-
inal nonlinear model. But this can significantly increase
the number of rules; moreover, it leads to complex cal-
culations. Furthermore there are a lot of systems that we
can not find suitable sector for linearization of system. In
[29–31]fuzzy controller with nonlinear local models was
extended which decrease the number of needed rules for
representing the nonlinear system. The main innovation of
this reduction is less computational burden. Therefore the
sector nonlinearity is used only for distribution matrix of
nonlinear system and using nonlinear form of the system
in this paper and fuzzy analysis is a novelty for this paper

and It can consider larger category of nonlinear systems.
The problem of simultaneously estimation unknown input
and fault in the plant in [32] was considered; although, us-
ing the derivative of measurements was a big disadvantage
of this method. Using an equivalent output error injection
approach in the sliding mode observers was proposed to
overcome uncertainties in the systems [33], but it covered
only actuator fault. A generalized state space form using
linear transformation was employed in [34], such that the
augmentation system was a descriptor system for state and
fault estimation. This singular formulation provided the
possibility for sensor fault estimation and actuator faults
from the equivalent output error injection signal with slid-
ing manifold however their LMI’s conditions was com-
pletely conservative. A prescribed H disturbance attenu-
ation level was integrated into the sliding mode observer
design using LMI optimization in [8].

Among of studies, unknown input observers (UIO) was
capable to reject the effect of unknown input completely
[26, 35, 36]. The recent papers in this field have been ad-
dressed for the class of nonlinear systems with state un-
known inputs and certain fault [37], LMI approach for T-S
linear fuzzy model in [38, 39], but for T-S bilinear fuzzy
model [40]. Despite numerous works available, based
on the authors knowledge LMI formulation for the prob-
lem of robust state estimation for fault diagnosis simulta-
neously was rarely considered. These results were only
obtained for ordinary nonlinear systems. This paper ad-
dresses the robust state estimation and fault diagnosis for
fuzzy nonlinear models.

In this paper, the main innovation is to introduce a ro-
bust fuzzy scheme for detection and isolation larger class
of faulty nonlinear systems compares to last decade liter-
atures. The novelty does not lead to increase the compu-
tation; moreover, fault can be occurred in each subsys-
tem of original system such as sensors and states. In-
deed, there is not any restriction on time profile of fault,
but these should be norm bounded. It is not restricted be-
cause, when the domain of fault is infinitive, fault detec-
tion scheme is meaningless. The main idea is using lin-
ear transformation and suitable NUIO for generating the
residual signal. There are some schemes for this extract-
ing, but using faulty subsystems to generate the residual
signal is a new idea. After that, using fault free subsystem
and faulty subsystem has been generated residual signal.
Using quadratic Lyapunov function to prove the theorem
makes simple and effective LMIs for design observers.

The rest of this paper is organized as follows: In the sec-
ond section, the nonlinear model that is affected by fault
is presented. Then new method for fault diagnosis is pro-
posed in the third section; after wards, simulation of the
proposed scheme, its ability for industrial system has been
demonstrated. A conclusion finishes the paper.
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2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following nonlinear system:

ẋ = f (x,u)+Fd(t)+ψ(y,u) fc, (1)

y =Cx+λ (y,u) fs, (2)

where x ∈ Rn is the state vector, u ∈ Rnu is the input
vector and y ∈ Rny represents the system output vector.
fc ∈ Rnc and fs ∈ Rns are component and sensor fault re-
spectively and d(t)∈ Rnd contains the uncertainty and dis-
turbance, called unknown input signal. The nonlinear
function f (x,u) is differentiable respect to x and u, then
this class of system can be converted to a linear and non-
linear parts as follows [41]:

ẋ = Ax+Bu+G(x,u)+Fd(t)+ψ(y,u) fc, (3)

y =Cx+λ (y,u) fs. (4)

where A, B, C and F are real constant with known matrices
of appropriate dimensions. The known nonlinear function
G(x,u) is Lipschitz [42, 43], with respect to x uniformly
for u ∈ U (U is an admissible control set) with positive
Lipschitz constant γ0

∥G(x1,u)−G(x2,u)∥ ≤ γ0∥x1 − x2∥, (5)

and ψ(x,u), λ (x,u) are nonlinear distribution matrix of
component and sensor fault assumed to be full rank and
norm bounded with positive constants γ1 and γ2 as follow:

∥ψ(y,u)∥ ≤ γ1, ∥λ (y,u)∥ ≤ γ2. (6)

This modelling strategy will be not restricted for the phys-
ical models such as the flight control system or on un-
manned underwater vehicle and design control laws to
compensate for each input controls that gets an arbitrary
deflection angle. The objective of the flight control system
is to force the missile to achieve the steering commands
developed by the guidance system; therefore, position and
speed control of the missile present a real problem for the
actuators because of the high level of the system nonlin-
earity and because of the unknown input signals will be
necessary. Each fault or failure in the situations of ca-
nard, wings or tail fins of a missile enter with high level
nonlinearity in the main state space equations after several
mapping of coordination [44, 45].

The number of measurements is more than the number
of faults occurs in the system

ns +nc < ny, (7)

and this assumption is not restricted because it can be
overcome by using more than one observer, each observer
for a subset of the faults that satisfy assumption (7).

Lemma 1: For any matrices X and Y with appropriate
dimensions, the following property holds for any positive
scalar ε [46]:

XTY +Y T X ≤ εXT X + ε−1Y TY. (8)

3. PROPOSED FAULT DIAGNOSIS SCHEME

In this section, a fault diagnosis scheme introduces that
is suitable for a multivariable nonlinear system. T-S fuzzy
models can be used to express high level nonlinearity as a
set of local subsystems interpolated by membership func-
tions. This approach has proven to be capable of approx-
imating any smooth nonlinear systems especially distri-
bution matrices of each fault. In the complicated system
such as a missile, T-S fuzzy model will have a lot of lin-
ear local subsystems that leads more computational time.
Therefore, the fuzzy model is produced to overcome non-
linearity in its distribution matrix to handle widespread
range of faults in different situations of a complicated sys-
tem. The proposed fault detection scheme has three parts.
At first a T-S fuzzy system to represent model (3)-(4) is
used, but each of the local models are nonlinear. In the
next part, linear transformation for each local model has
been generated in order to decoupling the state and out-
put equations into free and fault dependent parts. Third
part covers the fault detection and isolation together when
the fault free part is used to design an observer that would
guarantee estimation of the entire state vector irrespective
of the magnitude and nature of every fault. Also a pure
state estimation is used for residual generator signal.

3.1. Fuzzification
Using sector nonlinearity transformation, fault distribu-

tion matrix converts to constant matrix and a T-S fuzzy
model for the original model (3)-(4) can be obtain under
the form:

Ri : i f ζ1(y,u) is χ i
1, . . . ,ζm(y,u) is χ i

m, then

ẋ = Ax+Bu+G(x,u)+Fd(t)+ψ i fc,
y =Cx+λ i fs i = 1, . . . ,r

(9)

where Ri denotes the ith fuzzy inference rule, r is the
number of fuzzy rules, χ i

m̄(m̄ = 1, . . . ,m) is a fuzzy set,
ζ(y,u) = [ζ1(y,u), . . . ,ζm(y,u)] is the premise variable
vector. ψ i and λ i are constant matrices for each i that
represent the component and sensor fault distribution ma-
trices. The nonlinear models in the consequent parts are
called local nonlinear models in this paper.

Given (y(t),u(t)), the final outputs of nonlinear T-S
fuzzy systems are inferred as follows:

ẋ =
r

∑
i=1

hi(.)(Ax+Bu+G(x,u)+Fd(t)+ψ i fc), (10)

y =
r

∑
i=1

hi(.)(Cx+λ i fs) (11)
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the weighting functions satisfy the following properties:
r

∑
i=1

hi(ζ (y,u)) = 1.

0 ⩽ hi(ζ (y,u))⩽ 1, ∀i ∈ {1, · · · ,r} .

Given the system (10)-(11) affected by some fault and dis-
turbance, the diagnosis task consists in generating a resid-
ual signal that is mainly affected by the fault . In the fol-
lowing subsection, the proposed method using fuzzy non-
linear observer is investigated.

3.2. Decoupling the faulty subsystems
To decouple the rest of the system is affected by the

fault in each of the fuzzy subsystems, a linear transforma-
tion has been used. The faulty subsystems are completely
affected by the fault and thus can be used to make a resid-
ual signal. This residual has maximum sensitivity to the
fault while insensitive to disturbance in order that the fault
diagnosis in robust control; as a result, it can detect each
critical condition that faults can make.

In this stage, a linear orthogonal transformation, con-
verts each local model to two subsystems and it can con-
vert each rule of the fuzzy systems. Since rank(ψ i) = nc

, therefore without loss of generality, there is a nonsingu-
lar change of coordinate T i

0 which provides the following
geometric condition associated with ψ i:

T i
0ψ i =

[
ei

0

]
, (12)

where ei ∈ Rnc×nc and by using T i
0 , matrix F has been par-

titioned as:

T i
0F =

[
f i
1

f i

]
(13)

for each nonsingular f i
1 exists a nonsingular transforma-

tion T i
1 as:

T i
1 =

[
Inc − f i

1 f i−1

0n−nc×nc In−nc

]
, (14)

then

T i
1T i

0ψ i =

[
ei

0

]
, T i

1T i
0F =

[
0
f i

]
.

Furthermore λ i is corresponding distribution matrix with
full columns rank and thus without loss of generality, there
is a nonsingular transformation Si which provides the fol-
lowing geometric condition.

Siλ i =

[
li

0

]
, (15)

where li ∈ Rns×ns with rank(li) = ns then the state space
equation (9) becomes:

ẋ1 = ai
1x1 +ai

2x2 +bi
1u+Gi

1(T
i−1

x̄,u)+ ei fc, (16)

ẋ2 = ai
3x1 +ai

4x2 +bi
2u+Gi

2(T
i−1

x̄,u)+ f id. (17)

y1 = ci
1x1 + ci

2x2 + li fs, (18)

y2 = ci
3x1 + ci

4x2. (19)

use these coordinate transformation Si and T i = T i
1T i

0 for
each local model

x̄ := T ix = T i
[

x1

x2

]
, ȳ = Siy =

[
y1

y2

]
.

Thus the state space equation has been decoupled, as
shown in (16) - (19). Note that ẋ2 and y2 are not affected
by the faults fc and fs since rank(ci

3) = nc, a nonsingular
matrix may be constructed from

N i
2 =

[
ci+

3
Mi

2

]
. (20)

where, ci+
3 is the pseudo-inverse of ci

3, defined as ci
3 =

(ciT
3 ci

3)
−1ciT

3 and Mi
2 ∈ R(ny−ns−nc)×(ny−ns) is an arbitrarily

selected matrix so that N i
2 is nonsingular. Premultiplying

fault free part of (18) with N i
2 gives

x1 = ci+
3 (y2 − ci

4x2), (21)

Mi
2y2 = Mi

2ci
3x1 +Mi

2ci
4x2. (22)

Substituting (21) into fault free part of (17), (19) and (22)
yields

ẋ2 = Ãi
2x2 + B̃i

2ũ+Gi
2(T

i−1
x̄,u)+F i

2d(t), (23)

ỹ2 = C̃i
2x2. (24)

Define

Ãi
2 = (ai

4 −ai
3ci+

3 ci
4), (25)

B̃i
2 =

[
bi

2 ai
3ci+

3 Si
2

]
, (26)

H̃ i
2 = Mi

2(Iny−ns − ci
3ci+

3 )Si
2, (27)

C̃i
2 = Mi

2(Iny−ns − ci
3ci+

3 )ci
4, (28)

ỹ2 = H̃ i
2y, ũ = [u y]T , F i

2 = f i, (29)

where Si
1 and Si

2 are first ns rows and end ny − ns rows of
coordination matrix Si.

Then using faulty part of (16) and premultiply with non-
singular matrix as

N i
1 =

[
ci+

4
Mi

1

]
. (30)

where, ci+
4 is the pseudo-inverse of ci

4. If the number of
pure states (n−nc) are more than the number of pure out-
puts (ny − ns) do not need to select any arbitrary matrix
Mi

1. With suitable Mi
1 ∈ R(ny−ns−n+nc)×(ny−ns), the follow-

ing relations by (18) will be established:

x2 = ci+
4 (y2 − ci

3x1), (31)
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Mi
1y2 = Mi

1ci
3x1 +Mi

1ci
4x2. (32)

substituting (31) into faulty part of (16), (18) and (32)
yields

ẋ1 = Ãi
1xi

1 + B̃i
1ũ+Gi

1(T
i−1

x̄,u)+E i
1 fc, (33)

ỹ1 = C̃i
1x1 +Li

1 fs. (34)

Define

Ãi
1 = (ai

1 −ai
2ci+

4 ci
3), (35)

B̃i
1 =

[
bi

1 ai
2ci+

4 Si
2

]
, (36)

C̃i
1 =

[
(ci

1 − ci
2ci+

4 ci
3)

Mi
1(Iny−ns − ci

4ci+
4 )ci

3

]
, (37)

H̃ i
1 =

[
(Si

1 − ci
2ci+

4 Si
2)

Mi
1(Iny−ns − ci

4ci+
4 )Si

2

]
, (38)

ỹ1 = H̃ i
1y, Li

1 =
[

liT 0T
]T

, E i
1 = ei. (39)

Therefore, subsystems that include all faults in the plant
and subsystems that are free from each fault are generated;
as a result, the fuzzy system can be represented by:

Ri : i f ζ1(y,u)isχ i
1, . . . ,ζm(y,u)isχ i

m, then{
ẋ2 = Ãi

2x2 + B̃i
2ũ+Gi

2(T
i−1

x̄,u)+F i
2d,

ỹ2 = C̃i
2x2,

(40){
ẋ1 = Ãi

1x1 + B̃i
1ũ+Gi

1(T
i−1

x̄,u)+E i
1 fc,

ỹ1 = C̃i
1x1 +Li

1 fs.
(41)

The main reason to require rank(ψ i) = nc and rank(λ i)
= ns is that each fault have affected on corresponding state
variables or output signals (41). If these conditions do not
preserve in the sector nonlinearity method, corresponding
fault can not have suitable effect on the residual signal for
fault detection; but, it can be relaxed by choosing larger or
smaller subset of sector to overcome full rank condition
for each distribution matrix.

3.3. ROBUST RESIDUAL GENERATOR
The residual generator design for nonlinear system de-

scribed by the faulty subsystem is addressed in this sec-
tion. At first, an observer for each of the fault free sub-
sections (40) designs and the ith observer rule is of the
following form:

Ri : i f ζ1(y,u)isχ i
1, . . . ,ζm(y,u)isχ i

m, then

ż2 = H i
2z2 + Ji

2ũ+W i
2 ỹ2 +Qi

2Gi
2(T

i−1 ˆ̄x,u),
x̂2 = z2 −Ri

2ỹ2,

x̂1 = ci+
3 (Si

2y− ci
4x̂2),

(42)

where H i
2, Ji

2, W i
2, Qi

2 and Ri
2 for i = 1, . . . ,r are constant

matrices with appropriate dimensions defined as

H i
2 = Qi

2Ãi
2 −Ki

2C̃
i
2, Qi

2 = I +Ri
2C̃

i
2,

W i
2 = Ki

2 −H i
2Ri

2, Ji
2 = Qi

2B̃i
2, (43)

but Ki
2 and Ri

2 are chosen by Preposition 1. z2 ∈ ℜn−nc is
the observer state and ˆ̄x = [x̂1 x̂2]

T is the estimated real
transformed state vector. The objective is to determine the
gains of the observer such that the state estimation error
converges towards zero.

Nonlinear unknown input observer (42) has some ma-
trices such as H i

2,Q
i
2,W

i
2,J

i
2 and Ki

2 that has been reduced
to two matrices Ki

2 and Ri
2. Indeed these matrices create

relaxed conditions to design a stable observer to compare
ordinary observer that has a one design matrix. Sufficient
condition for FNUIO (42) is given in the following prepo-
sition and outlines a constructive design procedure.

Preposition 1: Given the nonlinear system (3), (4) with
assumptions (5)-(6) and Lipschitz constant γ0, consider
FNUIO structure (42)-(43). The observer error dynamics
is asymptotically stable such that ε > 0, Ki

2, Ri
2, and a

positive-definite symmetric matrix P2 exist such that the
following linear conditions hold for i = 1, . . . ,r:(

X i X i
12

X iT
12 −ε−1I

)
< 0, (44)

(I + R̄i
2C̃

i
2)F

i
2 = 0, (45)

where X i and X i
12 are defined as

X i = ((P2 + R̄i
2C̃

i
2)Ã

i
2 − K̄i

2C̃
i
2)

T

+(P2 + R̄i
2C̃

i
2)Ã

i
2 − K̄i

2C̃
i
2 + ε−1γ2

0 I, (46)

X i
12 = P2 + R̄i

2C̃
i
2,

with Ki
2 = P−1

2 K̄i
2 and Ri

2 = P−1
2 R̄i

2.

Proof: During the decoupling of fuzzy nonlinear sys-
tem the transformed states e2 = x2 − x̂2 and e1 = x1 − x̂1,
satisfy

e2 =
r

∑
i=1

hi(.)((I +Ri
2C̃

i
2)x2 − z2), (47)

e1 =
r

∑
i=1

hi(.)(−ci+
3 ci

4e2), (48)

then the equation of the observing error dynamics from
(40) and (42) becomes

ė2 =
r

∑
i=1

hi(.)(H i
2e2 +(Qi

2Ãi
2 −H i

2Qi
2 −W i

2C̃i
2)x2

+(Qi
2B̃i

2 − Ji
2)ũ+Qi

2G̃i
2), (49)

where Qi
2 = (I + Ri

2C̃
i
2), Ki

2 = W i
2 + H i

2Ri
2 and G̃2 =

Gi
2( ˆ̄x,u)−Gi

2(x,u). If the following conditions hold true
∀i = 1, . . . ,r

H i
2 = Qi

2Ãi
2 +Ki

2C̃
i
2, Ji

2 = Qi
2B̃i

2, Qi
2F i

2 = 0.



www.manaraa.com

1150 S. Hamideh Sedigh Ziyabari and Mahdi Aliyari Shoorehdeli

Then the equation of the observing error dynamic be-
comes

ė2 =
r

∑
i=1

hi(ζ (y,u))(H i
2e2 +Qi

2G̃i
2). (50)

Let us consider the following Lyapunov function

V (e2(t)) = eT
2 (t)P2e2(t). (51)

Using (51), the derivative of the Lyapunov function is
given by

V̇ (e2) =
r

∑
i=1

hi(.)(eT
2 (H

iT
2 P2 +P2H i

2)e2 +2eT
2 P2Qi

2G̃i
2)

using Lemma 1 and (5),

V̇ (e2)≤
r

∑
i=1

hi(.)(eT
2 (H

iT
2 P2 +P2H i

2 + εP2QiT
2 Qi

2P2

+ ε−1γ2
0 I)e2). (52)

Stability condition for the estimation error yields to that
the time derivative of the Lyapunov function should be
negative define.

H iT
2 P2 +P2H i

2 + εP2QiT
2 Qi

2P2 + ε−1γ2
0 I < 0. (53)

While replacing H i
2 and Qi

2, then using the variable change
R̄i

2 = P2Ri
2 and K̄i

2 = P2Ki
2, the last inequality (54) can be

written such that

((P2 + R̄i
2C̃

i
2)Ã

i
2 − K̄i

2C̃
i
2)

T +(P2 + R̄i
2C̃

i
2)Ã

i
2 − K̄i

2C̃
i
2

+ ε(P2 + R̄i
2C̃

i
2)(P2 + R̄i

2C̃
i
2)

T + ε−1γ2
0 I < 0. (54)

By using the Schur complement on inequality (54), LMI
(44) with parameters of (46) concludes . □

Moreover an observer for each of the faulty subsections
(41) designs. This Observer is inferred as follows:

Ri : i f ζ1(y,u)isχ i
1, . . . ,ζm(y,u)isχ i

m, then
˙̄̂x1 = Ãi

1 ˆ̄x1 + B̃i
1ũ+Gi

1( ˆ̄x,u)+N i(ỹ1 −C̃i
1 ˆ̄x1),

ˆ̃y1 = C̃i
1 ˆ̄x1,

rx = x̂1 − ˆ̄x1,

ry = ỹ1 − ˆ̃y1,

(55)

where N i
1 for i = 1, . . . ,r is constant matrix with appropri-

ate dimensions and it is chosen according to the following
theorem. ˆ̄x1 ∈ ℜnc is the estimated state vector from faulty
subsystem. Because of omitting disturbance in faulty sub-
systems, ˆ̄x1 has affected by only fault. Sufficient condi-
tion for guaranteeing the asymptotic convergence of state
estimation error in the residual signals rx and ry is in the
following theorem.

Theorem 1: The residual generator (55) converges
asymptotically to the state of the fuzzy model (41), if the
fault is bounded, and if ε > 0, ε̄ > 0, N i

1 for i = 1, . . . ,r,
and a positive-definite symmetric matrix P1 exist such that
the following LMI optimization problem has a solution(

Zi P1

P1 −ε−1I

)
< 0, (56)

Zi = (ÃiT
1 P1 +P1ÃiT

1 −C̃iT
1 N̄ iT

1 − N̄ i
1C̃

i
1 + ε̄−1γ2) (57)

with N i
1 = P−1

1 N̄ i
1.

Proof: The residual signals can be rewritten as,

rx = x1 − ˆ̄x1 +
r

∑
i=1

hi(.)ci+
3 ci

4e2, (58)

ry =
r

∑
i=1

hi(.)C̃i
1(x1 − ˆ̄x1) (59)

in the Preposition 1 is concluded e2 converges toward zero
therefore it can remove from (58). Then the equation of
the observing error dynamics from (41) and (55) becomes

ṙx =
r

∑
i=1

hi(.)((Ãi
1 −N i

1C̃
i
1)rx + G̃i

1 +E i
1 fc −N i

1Li
1 fs),

(60)

where G̃1 = Gi
1(T

i ˆ̄x,u)−Gi
1(T

ix̄,u). Let us consider the
following Lyapunov function

V (rx(t)) = rT
x (t)P1rx(t). (61)

Using (60), the derivative of the Lyapunov function is
given by

V̇ (rx(t)) =
r

∑
i=1

hi(.)(rT
x ((Ã

i
1 −N i

1C̃
i
1)P1 +P1(Ãi

1

−N i
1C̃

i
1)rx +2rT

x P1G̃i
1

+2rT
x P1(E i

1 fc −N i
1Li

1 fs)). (62)

Using Lemma 1, (5) and upper bound ρ on faulty part,

V̇ (rx(t))≤
r

∑
i=1

hi(.)rT
x (Ã

iT
1 P1 +P1Ãi

1 −C̃iT
1 N iT

1

−N i
1C̃

i
1n+ ε1P1P1 + ε−1

1 γ2

+ ε2P1P1ρ2 + ε−1
2 I)rx. (63)

Stability condition for the estimation error yields to that
the time derivative of the Lyapunov function should be
negative define.

ÃiT
1 P1 +P1Ãi

1 −C̃iT
1 N iT

1 −N i
1C̃

i
1

+(ε1 + ε2ρ2)P1P1 +(ε−1
1 γ2 + ε−1

2 )I < 0 (64)

by changing define ε = ε1+ε2ρ2, ε̄ = ε−1
1 γ2+ε−1

2 and us-
ing the variable change N̄ i

1 = P1N i
1 and by using the Schur

complement on inequality (64), LMI (56) concludes . □
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Faulty subsystem has nc state and its distribution matrix
is full rank, so each of the component faults correspond
to its state and this concept is common on the outputs of
faulty subsystem. Consequently fault isolation has done
with fault detection simultaneously. These observers are
able to remove all disturbance and uncertainty.

4. SIMULATION RESULTS

In this section, an example is given to illustrate the per-
formance of proposed method. Assume that the nonlinear
model can be affected by a disturbance and fault. Consider
nonlinear model with the following equations:

ẋ1 =−6x1 − x2 +u+ x3 sinx1 +d(t),

ẋ2 = 5x1 − x2 +u+ x1x2,

ẋ3 = x2 −2x3 +u+ x2u+ x2 sinx3 +d(t),

y1 = 0.2x1 − x2,

y2 =−0.1x2 + x3,

y3 = 0.1x1 − x3.

(65)

At first, the Lipschitz constant is computed and this is
computed as supremum of the magnitude of the partial
derivative of the nonlinear term G(x,u). That is

γ0 = ∥∂G(x,u)
∂x

∥∞ ,

where x,u are belong to domain of the nonlinear system
under consideration and

G(x,u) =

 x3 sinx1

x1x2

x2u+ x2 sinx3


for this example the Lipschitz constant is computed as
γ0 = 1.

The nonlinear system beside the disturbance has two
faults. Based on the situation of the faults, these can occur
in three sections such as two component faults, two sensor
faults or one component and one sensor fault. In this sec-
tion last situation is considered that includes two different
type of faults.

The previous nonlinear model (65) can be rewritten as

ẋ = Ax+Bu+G(x,u)+Fd(t)+ψ(y,u) fc(t),

y =Cx+λ (y,u) fs(t),

where the matrices ψ(.) and λ (.) contain two nonlinear
continuous terms z1(y,u) = y1y2, z2(y,u) = 0.5y1y3.

ψ =

 y1y2

1
1

 , λ =

 0.5y1y3

1
1

 .

z1 and z2 are two premise variables depend on state mea-
surements. Each premise variable is bounded in a compact
state space:

z1 ∈ [−0.614,0], z2 ∈ [−0.3155,0.4422].

Using the polytopic transformation of sector nonlinearity
method, the nonlinear continuous terms can be written as:

z1(y,u) = M1
F1
.z̄1 +M2

F1
z1,

z2(y,u) = M1
F2
.z̄2 +M2

F2
z2

where the functions M1
F1
,M2

F1
,M1

F2
and M2

F2
are respectively

given by:

M1
F1
=

z̄1 − z1

z̄1 − z1
, M2

F1
=

z1 − z1

z̄1 − z1
,

M1
F2
=

z̄2 − z2

z̄2 − z2
, M2

F2
=

z2 − z2

z̄2 − z2
.

(66)

The fuzzy nonlinear model is obtained by an interpolation
of local models with four membership functions (66), and
for each subsystem, there are two transformations T,S to
convert system to two subsystems:

T1 =

 −0.7071 0 0.7071
0.6196 1 −.06196
−0.8762 0 −0.5380

 ,

T2 =

 −0.7071 0 0.7071
0.6196 1 −.06196
−0.8762 0 −0.5380

 ,

T3 =

 −0.7071 0 0.7071
1 1 −1
−1.4142 0 0

 ,

T4 =

 −0.7071 0 0.7071
1 1 −1
−1.4142 0 0

 ,

Si = I3 ∀i = 1,2,3.

The UIO observer gains (43) proposed in this paper for
fault free subsystem (40), are obtained by solving the LMI
(44) under constrain (45). By choosing the scalar ε = 1,
their obtained UIO observer gains are

Q1
2 =

[
1 0
0.0386 0

]
, R1

2 =

[
0

0.1916

]
,

Q2
2 =

[
1 0
0.0386 0

]
, R2

2 =

[
0

0.1916

]
,

Q3
2 =

[
1 0
0.1768 0

]
, R3

2 =

[
0

662.135

]
,

Q4
2 =

[
1 0
0.1768 0

]
, R4

2 =

[
0

662.135

]
,

K1
2 =

[
0.6514
−0.1401

]
, W 1

2 =

[
0.7637
0.0295

]
,

K2
2 =

[
0.6514
−0.1401

]
, W 2

2 =

[
0.7637
0.0295

]
,

K3
2 =

[
1312
−283

]
, W 3

2 =

[
1218
215

]
,

K4
2 =

[
1312
−283

]
, W 4

2 =

[
1218
215

]
,
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H1
2 =

[
−2.5382 −0.5864
−0.0647 0.7527

]
,

H2
2 =

[
−2.5382 −0.5864
−0.0647 0.7527

]
,

H3
2 =

[
−3.4 0.1415
−0.4636 0.7527

]
,

H4
2 =

[
−3.4 0.1415
−0.4636 0.7527

]
,

J1
2 =

[
−0.6196 0 −1.6774 −0.7195
0.0239 0 −0.0648 −0.0278

]
,

J2
2 =

[
−0.6196 0 −1.6774 −0.7195
0.0239 0 −0.0648 −0.0278

]
,

J3
2 =

[
1 0 −0.4972 −0.5525
0.1768 0 −0.0879 −0.0977

]
,

J4
2 =

[
1 0 −0.4972 −0.5525
0.1768 0 −0.0879 −0.0977

]
,

P2 =

[
1.6232 −0.6426
−0.6426 7.1209

]
.

And a nonlinear Lunberger observer gains, same as pro-
posed in Theorem 1, but for fault free subsystems

N1 =

[
0.7813
0.0560

]
, N2 =

[
0.7813
0.0560

]
,

N3 =

[
650
−514

]
, N4 =

[
650
−514

]
,

P =

[
2.5040 0.0353
0.0353 1.4110

]
.

The simulation results are presented in Figs. 1-3. Fig.
1 shows unknown input signal and two component faults.
Also, residual signals are generated by a fuzzy Lunberger
observer (55) for faulty subsystem (41). By choosing the
scalers ε = 1 and ε̄ = 1, their observer gains obtained sim-
plicity:

N i
1 =−1.6645 ∀i = 1,2,3,4, P1 = 1.476.

The residual signal response in presence of unknown input
signal is shown in Fig. 2. UIO removes effects of unknown
input signal completely, but Lunberger observer is sensi-
tive to unknown input signal, same as faults. Fig. 3 display
good response of both schemes in absent of unknown sig-
nal. Figs. 2 and 3 represent the convergence of the residual
corresponding to the fault signals. UIO can remove effect
of each unknown input signal, but Lunberger observer can
not do it. Simulation results are shown the effectiveness
of proposed method to detect every fault in any situation
of the plant.

5. CONCLUSION

A new scheme for design of fuzzy residual generator for
a class of nonlinear systems is presented in this paper. It
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Fig. 1. Unknown input signal(solid line), component
fault(dashed line) and sensor fault(dotted line).
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Fig. 2. Residual signals from UIO (solid line) and Lun-
berger observer (dashed line) under unknown input
signal.
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Fig. 3. Residual signals from UIO (solid line) and Lun-
berger observer (dashed line) without unknown in-
put signal.

is shown that the scheme is able to detect the occurrence
of faults and eliminate unknown inputs. The considered
system are modelled with a T-S fuzzy nonlinear structure.
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The proposed results are developed for three cases: com-
ponent faults, sensor faults and components and sensor
faults simultaneously. A stability analysis is carried out
using a Lyapunov function. Furthermore, residual signals
of proposed approach compare with Lunberger observer
based scheme. UIO scheme residuals tracked fault signals
in presence of any unknown input signal, but Lunberger
based residual could not do it. Indeed a residual generator
is considered in order to be sensitive to fault and insensi-
tive to the disturbance or any unknown input signals. Fi-
nally, the effectiveness of the technique is illustrated with
the help of three numerical examples.
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